
Каталог продукции 2020

Инновации и Результат

Уникальные решения в области плазменных, лазерных и озоновых технологий

АКЦИОНЕРНОЕ ОБЩЕСТВО «ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ТРОИЦКИЙ ИНСТИТУТ ИННОВАЦИОННЫХ И ТЕРМОЯДЕРНЫХ ИССЛЕДОВАНИЙ»

ТРИНИТИ — РОСАТОМ

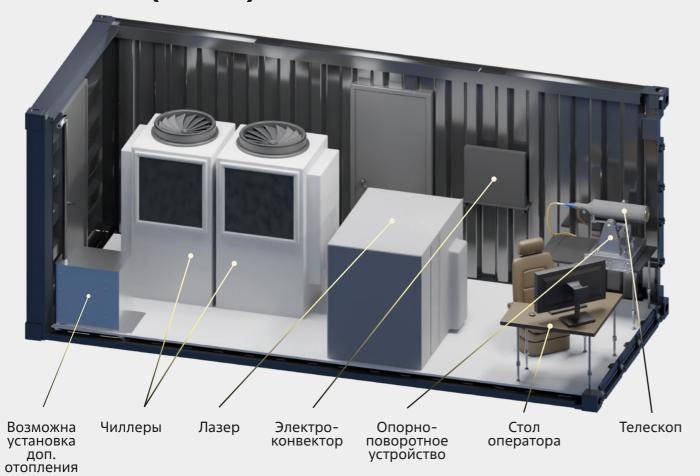
АО «ГНЦ РФ ТРИНИТИ» - предприятие Госкорпорации «Росатом», входящее в контур управления АО «Наука и инновации».

Обращение генерального директора

Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований - организация, известная в России и за рубежом своими результатами достижениями, центр исследований в области управляемого термоядерного синтеза, физики высокои низкотемпературной плазмы, физики и техники мощных газоразрядных лазеров, создания и применения импульсных источников энергопитания с использованием сверхпроводящих материалов, а также исследований и разработок в интересах обороны.

Данный каталог - демонстрация продукции, которая уже выпускается или планируется к выпуску в самое ближайшее время.

С наилучшими пожеланиями в достижении поставленных целей, Генеральный директор АО «ГНЦ РФ ТРИНИТИ» Марков Дмитрий Владимирович


Оглавление

Обращение генерального директора	3
Оглавление	5
Пазерные технологии	
Мобильный лазерный технологический комплекс (МЛТК)	8
Производство высокообогащенного изотопа Углерод-13	12
Тлазменные технологии	
Рентгеновская установка с высоким пространственным разрешением	16
Озоновые технологии	
∕становки для озонирования нового поколения	22
Научно-учебная лаборатория физики плазмы и лазерных технологий	l
Стенд «Магнетронный разряд»	28
Стенд «Разряд при атмосферном давлении»	30
Стенд электротехнических и импульсных измерений	32
Стенд «Тлеющий разряд»	32
Иногофункциональный лазерный стенд	33
√становка для лазерного разделения изотопов	36
Импульсное лазерное осаждение	36
Магнетронное распыление	37
Контактные данные	38

Мобильный лазерный технологический комплекс (МЛТК)

В АО «ГНЦ РФ ТРИНИТИ» на основе серийного иттербиевого лазера спроектирован мобильный лазерный технологический комплекс, который предназначен для выполнения таких видов работ, как:

- Дистанционная лазерная резка (до 300 м):
 - при ликвидации аварий, в т.ч. с открытым фонтанированием на газонефтяных месторождениях;
 - при разделке (утилизации) и фрагментации крупногабаритных толстостенных металло- и строительных конструкций (в т.ч. подводных лодок и кораблей);
 - разрушение ледяных образований.
- Дистанционная лазерная резка с использованием транспортного оптоволокна (до 100м):
 - фрагментация оборудования (парогенераторов, конденсаторов, корпусов реактора) на демонтируемых блоках АЭС;
 - подводная газолазерная резка металлоконструкций;
 - ликвидация загрязнений береговой и прибрежной зоны от аварийных разливов нефтепродуктов.

Один из возможных сценариев использования МЛТК - резка элементов корпуса реактора АЭС

МЛТК на базе волоконных иттербиевых лазеров разной выходной мощности успешно эксплуатируются при решении различных технологических задач (в т.ч. в газонефтяной и строительной отраслях).

Разработана и демонстрируется технология разделительной резки толстостенных (до 440 мм толщиной) пространственных металлоконструкций. Разделка этих металлоконструкций ведется на расстоянии до 100 м при транспортировке лазерного излучения по гибкому транспортному оптоволокну. Данное обстоятельство позволяет располагать в «чистой зоне» все оборудование лазерного комплекса, КПД его энергопотребления достигает 40%.

Демонстрация возможностей модуля

Тестовый бетонный блок 780х660х510 мм

Резка толстостенного металла, имитирующего корпус атомного реактора

Реальное применение

Примеры лазерной резки конструкций объектов, разрушенных при аварии на газовой скважине.

Первый комплекс "МЛТК-20", созданный в 2010 году по заказу "Газпромгазобезопасность" впервые использовался приликвидации аварии на газовой скважине №506 на действующем месторождении в 2011 году в Ямало-Ненецком автономном округе.

После этой аварии комплекс МЛТК-20 участвовал в ликвидации еще трех тяжелых аварий:

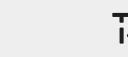
Август 2013 г. - Самбургское НГКМ (ЯНАО);

Июль 2014 г. - Верхнеколик-Еганское НГКМ (XMAO);

Январь 2015 г. - Северогубкинское НГКМ (одновременное открытое фонтанирование нефтяной и газовой скважины при температурах до -32°C).

Все аварии происходили с открытым фонтанированием.

Технические характеристики модуля


До 50 КВт

Возможная выходная мощность излучения

До 440 мм

Продемонстрированная глубина реза

До 300 метров

Дальность дистанционного воздействия

До 90 кВт

Энергопитание

От -50 до +40 °C

Климатические условия

Транспортный блок-контейнер

Формат

От 1 до 20 м/час

Скорость лазерной

резки конструкций

толщиной до 100 мм в автоматическом

60 минут

Время подготовки комплекса к эксплуатации

Основные области применения

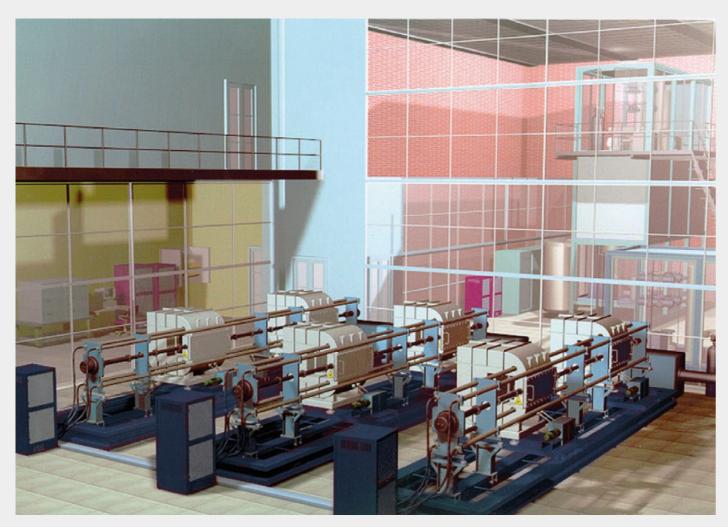
Фрагментация оборудования на АЭС

Ликвидация аварий на газонефтяных месторождениях

Фрагментация крупногабаритных толстостенных металлои бетонно-строительных конструкций

Подводная газолазерная резка металлоконструкций

Руководитель проекта


Петровский Александр Анатольевич

Готов ответить на любые Ваши вопросы!

Телефон: +7 910 409 79 58 E-mail: petrovskiy@triniti.ru

Производство высокообогащенного изотопа Углерод-13 методом лазерного разделения

В АО «ГНЦ РФ ТРИНИТИ» разработана технология лазерного разделения изотопов углерода, основанная на диссоциации молекул фреона-22 под действием излучения СО, – лазера. Данный метод не имеет мировых аналогов и позволяет получать высокообогащенный изотоп ¹³C, нашедший широкое применение в медицине.

Все более широкое распространение во всем щенный изотоп ¹³С применяется в таких обмире получают методы лечения и диагностики с использованием стабильных изотопов, в частности, диагностика гастроэнтерологических заболеваний при помощи дыхательных тестов с применением препаратов, содержащих изотоп ¹³С.

Помимо гастроэнтерологии, высокообога-

ластях как:

- Геология и геофизика;
- Судебная экспертиза/криминалистика;
- Экология;
- Научные исследования и стандартизация.

АО «ГНЦ РФ ТРИНИТИ» располагает необходимыми производственными площадями и оборудованием (лазерными установками). В институте работают высококвалифицированные специалисты, принимавшие участие в создании комплекса «Углерод-1» (г. Калининград), а также имеющие опыт пусконаладочных работ и обучения персонала. Это позволяет организовать промышленное производство двухстадийным лазерным методом, имеющим преимущество перед традиционными методами разделения изотопов для получения высокообогащенного изотопа ¹³С с производительностью до 30 кг в год.

Общий вид участка комплекса «Углерод-1», созданного в Калининграде

углерода-13 Основные преимущества лазерного производства АО «ГНЦ РФ ТРИНИТИ» по сравнению с другими методами:

1 час

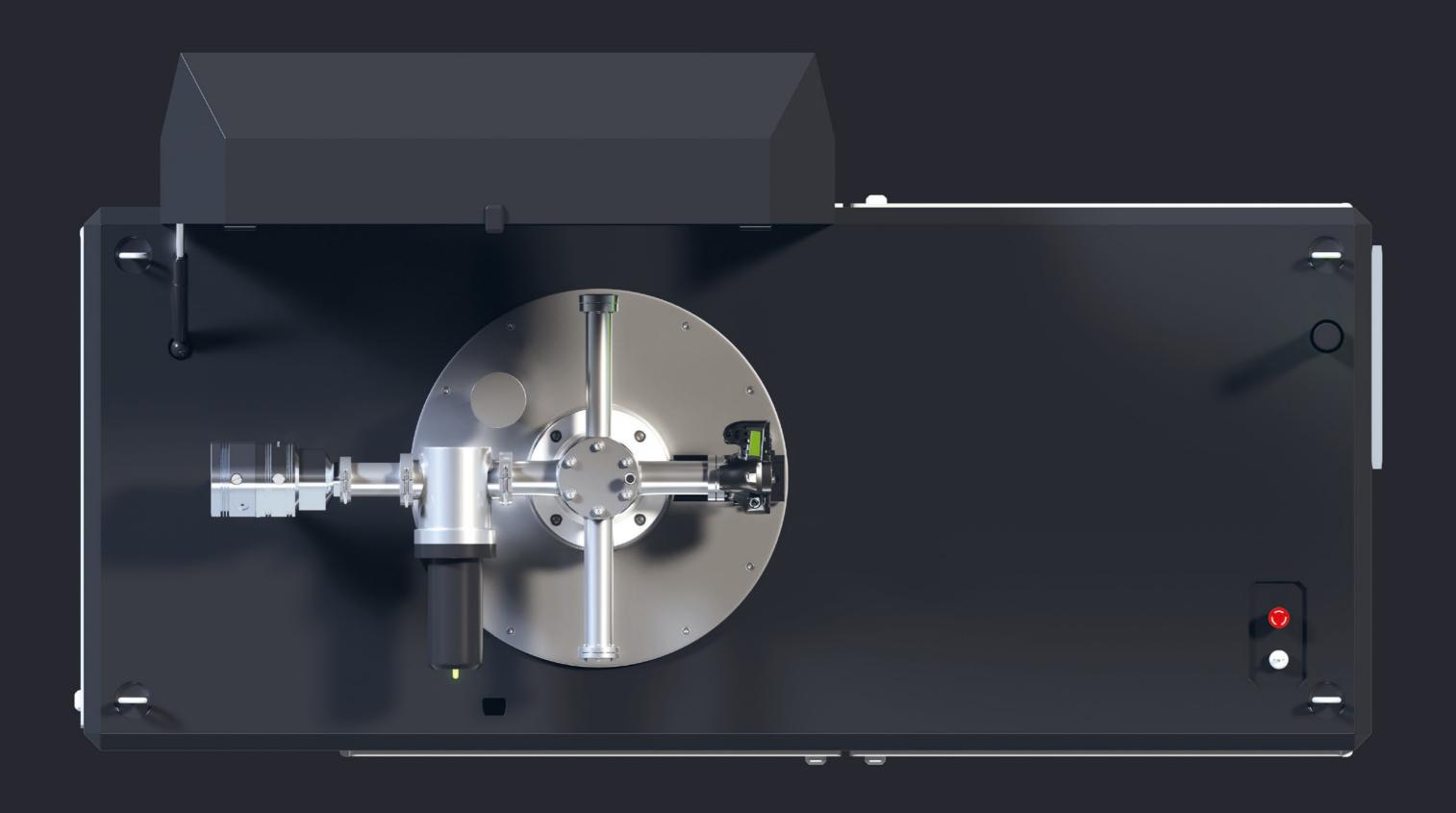
Выход на режим эксплуатации происходит моментально (получение продукта через час после запуска установки)

Выбор продукта

Возможность выбора конечного продукта – СО или СО, в зависимости от требований заказчика

Экологичность

Чистое производство и отсутствие вредных отходов

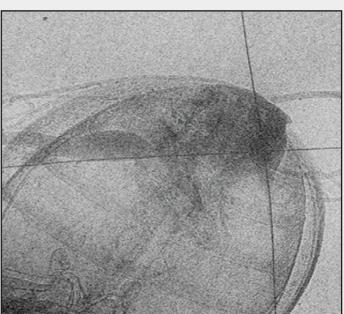

Руководитель проекта

Шейкин Алексей Алексеевич

Готов ответить на любые Ваши вопросы!

Телефон: 7 915 277 00 84 **E-mail:** sheykin@triniti.ru

Плазменные технологии



Рентгеновская установка с высоким пространственным разрешением



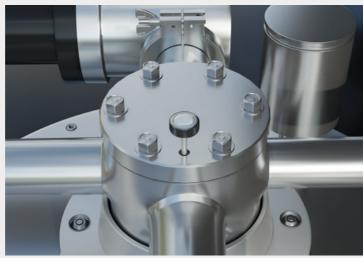
Габариты установки: 1500 х 600 х 1200 мм

Теневые рентгеновские изображения насекомых с различным увеличением

Рентгеновский аппарат с пространственным разрешением 1-2 микрон и временным разрешением 1 нс для исследования биологических объектов с удобной для пользователей сменой излучателя и наблюдаемого объекта.

жизнедеятельности режиме. Также аппарат не оказывает разрушительного воздействия


Аппарат предназначен для рентгеновского электронами на исследуемые объекты. зондирования различных биологических Также может использоваться для развития объектов и получения их изображений с диагностических методик исследования высоким пространственным разрешением плотной высокотемпературной плазмы (не ниже 2 мкм). Образцы не помещаются (рентгеновские камеры и спектрографы, в вакуум, что позволяет изучать спектрометры РИ, камеры-обскуры, живые объекты в безопасном для их полупроводниковые и вакуумные детекторы РИ, рентгеновское теневое зондирование и



Применение

- Исследование биологических объектов;
- Оценка качества тонких покрытий;
- Дефектоскопия методом неразрушающего контроля;
- Проведение научно-исследовательских работ в области изучения тонких покрытий, их структуры и адгезионных свойств;
- Для учебных целей в биологии, медицине, микромеханике и др.

Ключевые особенности установки:

Размер рентгеновского источника

1-2 мкм

Сменные излучатели

Удобная и быстрая смена излучателя и исследуемого объекта

Длительность вспышки

1 нс

Несколько объектов

Возможность одновременного зондирования сразу нескольких объектов исследования

Высокое пространственное разрешение

2 мкм

Контрастность

Установка позволяет получать высококонтрастные рентгеновские снимки

Живые объекты

Просвечивание живых объектов в режиме, безопасном для их жизнедеятельности

Толщина объектов

Просвечивание неплотных тканей

Руководитель проекта

Косарев Станислав Александрович

Готов ответить на любые Ваши вопросы!

Телефон: +7 910 544 41 83 **E-mail:** kosarev@triniti.ru

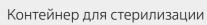
Озоновые технологии

Установки для озонирования нового поколения

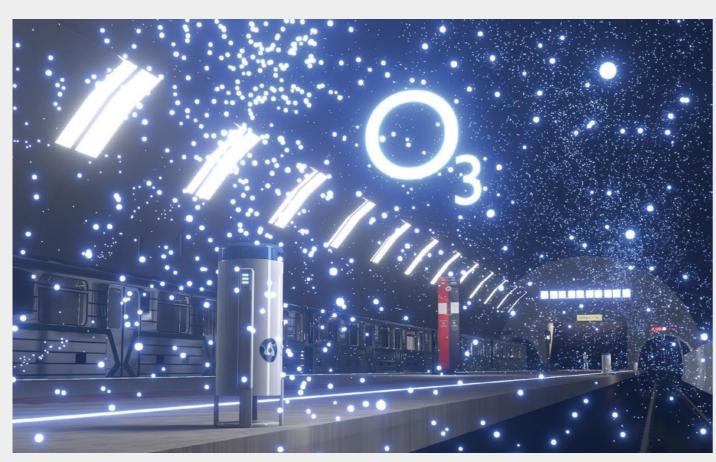
Установка для производства концентрированного озона представляет собой аппарат с охлаждением капиллярной разрядной камеры. Предназначена для получения озона с концентрацией до 0,5 г/м³, что как минимум в 2 раза выше значений концентрации О,, производимого на мировых аналогах.

В зависимости от области применения установка снабжается дополнительными модулями:

- Модуль производства чистого озона;
- Модуль глубокого окисления;
- Модуль производства озона из воздуха для применения в условиях высокой влажности и низкой температуры;
- Мобильные модули накопления-распределения озона.


Мобильный комплекс

Основные преимущества установки:


- Размеры озонатора меньше аналогов в 10 раз;
- Концентрация производимого озона выше в 2 раза;
- Мобильность и легкость монтажа;
- Оборудование позволяет в 3-4 раза сократить затраты на электроэнергию.

Промышленный озонатор

Стерилизация и дезинфекция крупных транспортных узлов и метро

Технические характеристики озонатора

Параметры		Значения
Номинальная производительность по озону	г/ч	65
Номинальная концентрация озона на выходе	г/м3	0,5
Средний расход воздуха	м3/ч	300
Рабочий газ	-	Комнатный воздух
Потребляемая мощность	кВт/ч	2
Охлаждение	-	Воздушное
Регулировка производительности по озону	%	0-100
Напряжение питания от сети 50Гц	В	220
Габариты	мм	350x450x200
Bec	КГ	15
Возможность стерилизации медицинских инструментов	-	Возможно
Возможность стерилизации помещений	-	Возможно
Возможность применения в амбулаторных условиях	-	Возможно
Возможность стерилизации рабочих мест медицинского	-	Возможно
персонала		
Мобильность	-	Мобильный комплекс

Области применения

Медицинские учреждения

Технология медицинской стерилизации и дезинфекции как помещений, так и оборудования, инструментов и спецодежды

Нефтяная промышленность

Технология очистки стоков

Канализационные комплексы

Технология глубокого окисления озоном органических комплексов в бытовых канализационных стоках

АЭС

Деактивация выведенного из эксплуатации оборудования АЭС

Транспорт

Стерилизация и дезинфекция крупных транспортных узлов и метро

Дезинтеграция автопокрышек

Технология озономеханической дезинтеграции автопокрышек

Агропром

Технологии предпосевной фумигации, стерилизациии защиты семян

Металлургия

Выщелачивание сульфидных руд

Руководитель проекта

Косарев Станислав Александрович

Готов ответить на любые Ваши вопросы!

Телефон: +7 910 544 41 83 **E-mail:** kosarev@triniti.ru

Научно-учебная лаборатория физики плазмы и лазерных технологий

В соответствии с приоритетами государственной научно-технической политики Российской Федерации АО «ГНЦ РФ ТРИНИТИ» предлагает концепцию научно-учебной Лаборатории физики плазмы и лазерных технологий мирового научного уровня.

Первостепенные задачи Лаборатории - развитие научно-технического потенциала, обучение и подготовка кадров для овладения передовыми навыками и методиками исследований в области физики плазмы и лазерных технологий, создание научных и инженерных компетенций.

Исследования, проводимые в Лаборатории, обеспечат развитие практических компетенций по широкому перечню направлений научного и прикладного характера. Обучение на научно-исследовательском оборудовании мирового класса позволит подготовить высококвалифицированных специалистов для различных отраслей промышленности.

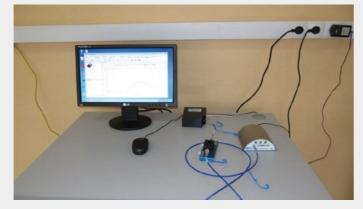
Наши специалисты разработают и предложат совместную реализацию авторских программ научных исследований. Реализация программы обеспечит рост таких наукометрических показателей, как количество защищенных диссертаций на соискание ученой степени кандидата и доктора наук, увеличение числа научных публикаций в ведущих российских и международных научных изданиях, создание охраноспособных РИД.

Стенд «Магнетронный разряд»

несения высокопрочных защитных покрытий из различных материалов и композитов ными физическими характеристиками (толв магнетронном разряде, а также нанесения тонких металлических пленок электронного качества на полупроводниковые материалы с целью создания приборов для измерения ионизирующих излучений. Метод магне-

Предназначен для отработки технологии на- тронного распыления позволяет получать тонкие пленки высокого качества с рекордщина, сплошность, адгезия и пр.), а также проводить послойный синтез новых структур (структурный дизайн), создавая пленку на уровне атомных плоскостей.

Технологическое оборудование в ГНЦ РФ ТРИНИТИ


Высокотемпературный отжиг

Ультразвуковая сварка

Участок химической обработки поверхности кристаллов

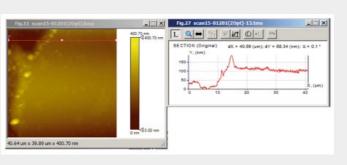
Спектрометр (200-1100 нм)

Лазерная резка

Осаждение тонких пленок

Технологические применения магнетронного разряда

- Разработка детекторов для измерения нейтронов, альфа, гамма, бета, излучения для диагностики термоядерной плазмы и т. д.
- Создание защитных покрытий из различных материалов и композитов.
- Осаждение защитных покрытий из различных материалов и композитов
- Исследование магнетронных разрядов для получения покрытий с адгезией высокого качества.



Применение защитных покрытий к корпусам детекторов

Контроль нанесенных адгезионно-прочных покрытий

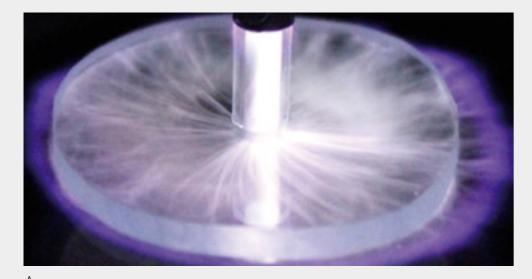
Сканирующий нанотвердомер "НаноСкан

Тестирование прочности адгезии на сканирующем нанотвердомере

Корпус детектора с разъемом для подключения

Стенд «Разряд при атмосферном давлении»

Стенд предназначен для проведения научных исследований неравновесной низкотемпературной плазмы при атмосферном давлении и разработки методов ее практического использования.

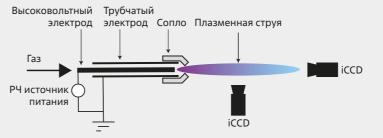


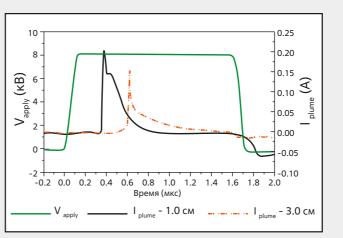
Оборудование стенда

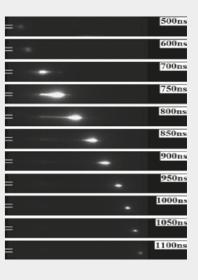
Обработка холодной плазмой конкретного объекта регулируется многочисленными параметрами газового разряда и плазмы. Поэтому выбор условий эксплуатации требует знания параметров плазмы.

Важнейшая диагностика, которая широко используется в современных экспериментах, основана на быстрых кадровых камерах и спектроскопических устройствах с высоким спектральным и временным разрешением.

Газовые разряды, генерирующие нетермическую плазму, неоднородны в пространстве и нестационарны по времени. Это приводит к необходимости мгновенно проводить измерения газового разряда, по крайней мере, из двух поперечных направлений, требующих наборов быстрых кадровых камер и спектроскопических приборов с высоким спектральным и временным разрешением.

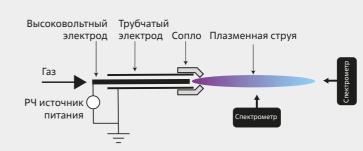


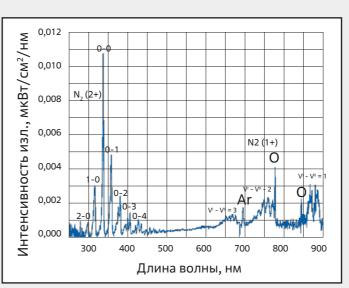


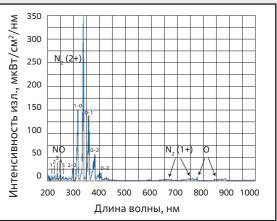

Б

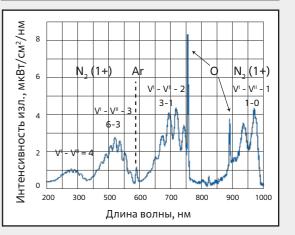
Обработка поверхности низкотемпературной плазменной струей аргона при атмосферном давлении в режиме широкой (А) и узкой (Б) апертуры

Одновременное изучение из двух пространственных направлений (iCCD):









Одновременное изучение из двух пространственных направлений (Спектрометры):

Стенд электротехнических и импульсных измерений

Оборудование стенда

Производство и испытание зондов для измерения импульсов тока и напряжения с наносекундным откликом. На X-пинче и плазменном фокусе надо измерять ток до 1 МА, напряжение до 0,5 МВ с временем нарастания ~ (1-100) нс. Подобные экземпляры промышленных зондов отсутствуют. Такие зонды создаются вместе с объектом и тестируются и улучшаются на этом стенде.

Стенд «Тлеющий разряд»

Оборудование стенда

Стенд позволяет проводить зондовые, электротехнические и спектральные измерения стационарной плазмы. При этом определяется температура плазмы разряда, ее плотность, распределение потенциала в различных частях разряда как вдоль оси цилиндра, так и по радиусу. Аппаратура и методы, используемые на стенде, также будут использоваться для очистки образцов и определения элементного состава.

Стенд тлеющего разряда предназначен для обучения персонала и получения навыков и знаний в области низкотемпературной плазмы.

Сотрудники, работающие на стенде, должны обладать навыками работы с устройствами, используя вакуумную технологию. Оборудование стенда должно быть в состоянии определить концентрацию и температуру плазмы, а также их пространственные распределения.

Классическими устройствами для этого являются одиночные и двойные электрические плазменные зонды. Зонды должны быть созданы, протестированы и улучшены на этом стенде.

Многофункциональный лазерный стенд

Поставленная руководством страны задача повышения производительности и качества промышленной продукции обосновывает актуальность разработки современных методов обработки материалов. Предлагаемые к разработке лазерные технологии должны обеспечить решение поставленной задачи путём создания высокопроизводительного оборудования, оснащенного соответствую-

щими лазерными источниками излучения. Многофункциональный лазерный стенд содержит четыре установки и предназначен для проведения исследований по нескольким направлениям. Эти исследования позволят не только овладеть современными лазерными технологиями, но и откроют перспективы для разработок новых технологий.

Лазерный размерный раскрой металла

В АО «ГНЦ РФ ТРИНИТИ» в 2007 году создан и успешно эксплуатируется участок лазерного размерного раскроя листового металла размерами 1,5 м х 3,0 м с использованием иттербиевого волоконного лазера мощностью излучения 2,0 кВт. Производится раскрой металла разных марок толщиной до 14 мм с точностью ±0,5 мм.

Созданная установка заложит основы для разработки методик и создания управляющих программ размерного раскроя металлических листов сложного профиля и состава, что позволит выпускать высокоточные изделия по доступной цене для различных потребителей.

Двухкоординатный стол

Лазерная обработка строительных материалов

Опыт применения созданного в АО «ГНЦ РФ ТРИНИТИ» в 2010 г. мобильного лазерного комплекса МЛТК-20 для дистанционной лааварийных газоконденсатных месторождений показал эффективность данного способа для ликвидации последствий аварии. Полученные предварительные результаты свидетельствуют о хороших перспективах применения лазерного излучения для резки

и других материалов (бетона, железобетона, кирпича и др.).

Развитие работ в этом направлении будет зерной резки металлоконструкций на ряде способствовать повышению темпов строительства гражданских и промышленных объектов, в особенности при ведении подземных разработок, а также позволит проводить фрагментацию корпусов списанных судов при подводной лазерной резке, решать задачи МЧС и т.п.

Лазерная резка арматуры

Лазерное сверление и резка бетона

Лазерная гравировка и очистка поверхности

Очисткой поверхностей металлических и бетонных конструкций коллектив исполнителей занялся в 1980-е годы (после Чернобыльской аварии). Была разработана и успешно использовалась технология очистки металлических поверхностей от радиационных загрязнений излучением СО, лазера мощностью 3 кВт (КПД ≤ 12%). В настоящее время на лабораторном оборудовании с волоконным иттербиевым импульсно-периодическим лазером (КПД ≤ 30%) средней

мощностью до 150 Вт демонстрируется гравировка любой формы на металле, а также очистка металлических элементов от корро-

Разработанная технологическая оснастка для лазерной очистки поверхностей различных материалов может найти применение при очистке от лакокрасочных покрытий, ржавчины и других видов загрязнений, а также при восстановлении музейных экспонатов и памятников архитектуры.

ИП волоконный лазер QCW 150/1500

Пример гравировки и очистки

Аддитивные технологии

кое распространение получают аддитивные технологии. Одним из самых распространенных методов 3D-печати является метод селективного лазерного плавления (SLM -Selective Laser Melting). Изделие, получаемое с использованием этих технологий, характеризуется малой удельной плотностью и имеет геометрические характеристики, по-

Во многих отраслях промышленности широ- лучение которых недостижимо при использовании существующих методов обработки материалов. Для получения качественных изделий необходим контроль параметров процесса плавления в реальном масштабе времени (on-line контроль). Важнейшим из таких параметров является температура поверхности.

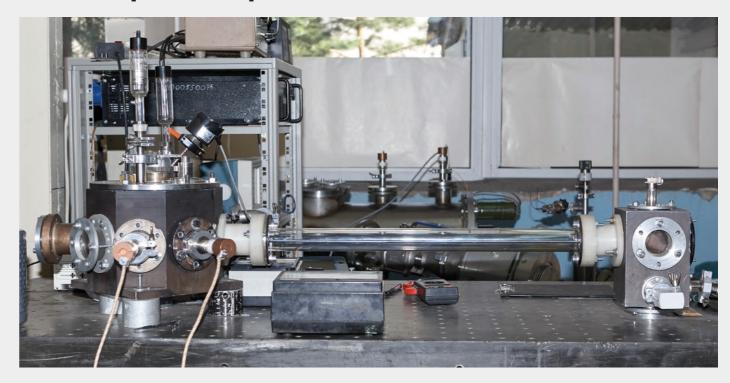
Волоконный лазер ЛС-2

Графики измерений температуры системой контроля при селективном лазерном плавлении

Установка для лазерного разделения изотопов

Установка для лазерного возбуждения и фотоионизации редкоземельных металлов (Yb, Lu, Tb и др) и последующим селективным извлечением высокообогащенных изотопов из атомного пара с высокой производительностью.

Импульсное лазерное осаждение


Установка для осаждения покрытий методом импульсного лазерного осаждения УФ и ИК лазерным излучением.

Сфокусированное на мишени лазерное излучение образует факел, в котором присутствуют электроны, ионы и твердые микрочастицы материала мишени, отрывающиеся при взрывообразном испарении материала. Подбор параметров факела позволяет создавать покрытия с уникальными характеристиками.

Мишень может состоять из разных дисков (Al, Al_2O_3 , Cr и др.). Излучение можно перефокусировать с диска на диск, тем самым создавая различные композиции элементов в защитном слое.

Магнетронное распыление

Установка для нанесения покрытий металлов на протяженные цилиндрические изделия методом магнетронного распыления катода коаксиальным протяженным разрядом с различными видами подготовки поверхности.

Установка для нанесения защитного покрытия на протяженные цилиндрические изделия представляет собой совокупность технологических модулей, каждый из которых

состоит из 2-х блоков: блок подготовки поверхности и блок, в котором создается протяженный коаксиальный магнетронный разряд и происходит нанесение покрытия на изделие одновременно и однородно по всей его длине, что исключает коробление. Необходимая производительность может быть обеспечена за счет одновременной работы нескольких технологических модулей.

Руководитель проекта

Тагиров Глеб Евгеньевич

Готов ответить на любые Ваши вопросы!

Телефон: +7 912 317 49 50 **E-mail:** tagirov@triniti.ru

Контактные данные

АО «ГНЦ РФ ТРИНИТИ» 108840, Москва, г.о. Троицк, ул. Пушковых, вл. 12

Официальный сайт ГК «Росатом»

www.rosatom.ru

Официальный сайт Управляющей компании «Наука и инновации»

www.niirosatom.ru

Академия Росатома

www.rosatom-academy.ru

Официальный сайт ГНЦ РФ ТРИНИТИ

www.triniti.ru

Будем рады ответить на Ваши вопросы!

Заместитель генерального директора института по международной и коммерческой деятельности Беданоков Азамат Юрьевич Тел. +7 929 999 59 60 E-mail: bedanokov@triniti.ru

Советник коммерческого блока Васильева Светлана Валерьевна Тел. +7 903 104 48 98 E-mail: vasileva@triniti.ru

Руководитель проекта Тагиров Глеб Евгеньевич Тел. +7 912 317 49 50; E-mail: tagirov@triniti.ru

Руководитель проекта Косарев Станислав Александрович Тел. +7 910 544 41 83; E-mail: kosarev@triniti.ru

Руководитель проекта Петровский Александр Анатольевич тел. +7 910 409 79 58; E-mail: petrovskiy@triniti.ru

Руководитель проекта Шейкин Алексей Алексеевич тел. +7 915 277 00 84; E-mail: sheykin@triniti.ru

