ЛАБОРАТОРНЫЙ ТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС «АЛМАЗНЫЙ ДЕТЕКТОР»

Комплекс запущен и сдан в эксплуатацию в 2012 году.

Назначение

Проведение научно-исследовательских, опытно-конструкторских работ образовательной деятельности в области физики плазмы, управляемого термоядерного приборостроения. ядерного осуществление нанотехнологий И инновационной деятельности.

Решенные задачи

Разработан технологический цикл изготовления детекторов ядерных излучений. Изготовлены испытаны детекторы ионизирующих излучений основе на природного и синтетического алмаза. Созданы коды восстановления спектров нейтронов, альфа-частиц и гамма-излучения по отклику алмазного детектора.

ОБОРУДОВАНИЕ ЛАБОРАТОРНОГО ТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА:

- Высокотемпературная вакуумная печь 1. RD-G WEBB-117;
- Технологический комплекс лазерной обработки кристаллов DIAMAX:
- Настольные вакуумные напылительные установки DESK V TSC (3 шт.);
- Высоковакуумная установка ионной очистки поверхности кристаллов VACION-1S;
- Установка микросварки проволокой и лентой НВ04:
- Сканирующий электронный микроскоп TESCAN VEGA3 LMH;
- Сканирующий нанотвердомер «НаноСкан - Компакт».

1. Высокотемпературная вакуумная печь RD-G WEBB-117

Высокотемпературная вакуумная печь с вертикальной загрузкой предназначена дляобработки материалов в вакууме или инертной атмосфере. Идеально подходит для лабораторных исследований, проводить процессы закалки, спекания, обжига и

другие термические процессы при обработке образцов небольшого объема. Максимальная температура нагрева: в вакууме - до 2000 °C, в атмосфере аргона - до 2200 °C. Значение вакуума при температуре 1500 °C – не хуже 10⁻⁴ мбар.

Рис. 1. Высокотемпературная вакуумная печь RD-G WEBB-117.

2. Технологический комплекс лазерной обработки кристаллов **DIAMAX**

Технологический комплекс лазерной обработки кристаллов предназначен для резки кристаллов алмаза, их обработки и изготовления оснастки. Система управления параметрами лазера и геометрическими параметрами обработки обеспечивает высокое обработанных качество поверхностей кристаллов алмазных изготовление разнообразных видов изделий малых размеров.

Основные параметры Технологического комплекса лазерной обработки кристаллов

Максимальная мощность излучения	10 Вт
Диаметр пятна лазерного излучения в фокусе	10 мкм
Длина волны излучения	532 нм
Точность позиционирования образца	не более 1,5 мкм
Разрешение оптической системы	не более 0,3 мкм

Рис. 2. Технологический комплекс лазерной обработки алмазных кристаллов.

3. Настольная вакуумная напылительная установка DESK V TSC

Настольная магнетронная вакуумная DESK TSC напылительная система ٧ предназначена для напыления металлических мишеней помощью магнетронного распыления в плазме разрядом постоянного система обеспечивает тока. Данная приемлемые характеристики напыляемого слоя при низкой температуре подложки, быстрый цикл откачки, полностью автоматический или ручной режим работы, высокую производительность и повторяемость результатов. Используется для нанесения металлических контактов на чувствительный элемент детектора.

Основные параметры напылительной системы DESK V TSC:

Вакуумная камера: диаметр высота	15 см 15 см
Диаметр мишени магнетрона	60 мм
Толщина мишени магнетрона	0,1 мм
Предельное значение вакуума, не хуже	6 × 10 ⁻⁶ торр

Puc. 3. Вакуумная напылительная установка DESK V TSC.

4. Высоковакуумная установка ионной очистки поверхности кристаллов VACION-1S

Основные параметры установка ионной очистки поверхности кристаллов:

Состав квазинейтрального	
пучка	аргон, кислород
Энергия	
квазинейтрального пучка	20—200 эВ
Подложкодержатель	диаметр 7 см
Рабочее давление	не хуже 5 × 10 ⁻³ торр
Сила тока ионного пучка	не менее 0,5 А

Рис. 4. Высоковакуумная установка ионной очистки поверхности кристаллов VACION-1S.

Высоковакуумная установка ионной чистки образцов квазинейтральным ионным пучком предназначена для обработки поверхности кристалла. Имеется возможность обработки пучком аргона или кислорода с энергией пучка

ионов от 20 до 200 эВ. Установка снабжена контроллером, который позволяет управлять работой установки с персонального компьютера.

5. Установка микросварки проволокой и лентой НВ04

Установка микросварки решает следующие основные задачи: изготовление высокого качества соединений между металлическими поверхностями детектора и контактными проводниками корпуса; монтаж детектора в корпус; технологические работы по микросварке на металлических поверхностях алмазной пластины: отработка режимов микросварки на поверхности алмаза.

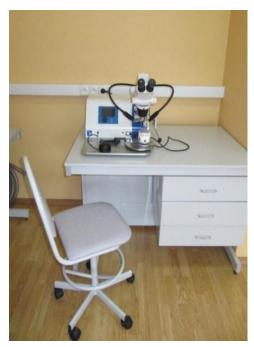


Рис. 5. Установка микросварки проволокой и лентой HB04.

6. Сканирующий электронный микроскоп TESCAN VEGA3 LMH

Электронный микроскоп предназначен для исследования поверхности кристалла как на образах, построенных в отраженных электронных лучах, так и для получения сопутствующих картин катодолюминесценции, дающих точное положение зон кристалла с

повышенной плотностью дислокаций, примесей и зон напряжений в кристалле. Контроль качества кристаллов осуществляется на различных стадиях технологического процесса.

Puc. 6. Сканирующий электронный микроскоп TESCAN VEGA3 LMH.

7. Сканирующий нанотвердомер «НаноСкан - Компакт»

для Предназначен исследования поверхности кристалла, адгезии контактов. При исследовании наличие вакуума не требуется, материалы исследования могут быть самые разнообразные, в том числе изоляторы, полупроводники, биологические объекты. При этом исследования могут проводиться без существенного повреждения объекта и с достаточно простой подготовкой его поверхности (например, только полировка отдельного участка).

Рис. 7. Сканирующий нанотвердомер «НаноСкан-Компакт».

Отделение физики токамаков-реакторов (ОФТР)